
,.. ,, .
, m m-m m-men

, n I IVIIIh VM~
A Department of Defense Information Analysis Center

'mm,

FAILURE MECHANISMS OF COMPOSITE STRUCTURES

S. R. Soni, S. C. Tan, G. P. Tandon, T. Hsiao, L. Roundy,
' ..... Barbara Woolsey, and Lisa Wilson[., T"IC (AdTech Systems Research Inc.)

~JAN 0 5 1990
JAN5 99IIFinal Technical Report

- to4D AIR FORCE WRIGHT RESEARCH AND DEVELOPMENT CENTER
L _.._ Materials Laboratory

• ATTN: WRDC/MLBM
Wright-Patterson Air Force Base. Ohio 45433-6533

( H7MIAC Report 17

Defense Electronics Supply Center Contract No. DLA900-86-C-0751

September 1989

"Approved for public releasd; distribution is unlimited."

90 01 ' 006
HIGH TEMPERATURE MATERIALS - MECHANICAL, ELECTRONIC AND THERMOPHYSICAL

PROPERTIES INFORMATION ANALYSIS CENTER
Operated by

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS
PURDUE UNIVERSITY
259 YEAGER ROAD

WEST LAFAYETTE. INDIANA 47906



Form APDroved
REPORT DOCUMENTATION PAGE M No. o70o-01a

PUbldK rego I in burden for this co lection of infofmation IS eStlfflatfd to Average I KOW OCf 'e Ofl. inC[Udlng the time for reii-ing iStrum"ort". eactIng eCu0Stiuq data Sources.
gatheri alnd maintatnin the date needed. and Coneing and reysewin the COilecjon of InfotmatiOn Sed Comlent re arding this burden estimqate of aii Other jit of this
colletion of ref.m ation including Sughistlon, tot 'eduigh burden. to Washington "eadquarten Service. 0irectorate or information Oeatlion, and Reoorts. 121S Jefle on
Oarns Hghwav. Suite 1204. Arlington. VA 222024302. andl tO the Office of Manaqemeu' and Budget. iaOerork Reduction PrOren (0704-0 185I. Washington DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I September 1989 Final Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Defense Electronics SupplyFailure Mechanisms of Composite Structures eene Elect upply
Center Contract Number:

DLA900-86-C-0751
6. AUTHOR(S) Air Force WRDC/Materials

S.R. Soni, S.C. Tan, G.P. Tandon, T. Hsiao, L. Roundy, Laboratory MIPR No.:
Barbara Woolsey, and Lisa Wilson FY1457-87-N-5057

(AdTech Systems Research Inc.) Amendment 01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

High Temperature Materials-Mechanical, Electronic and REPORT NUMBER

Thermophysical Properties Information Analysis Center
CINDAS/Purdue University (HTMIAC) HTMIAC Report 17

2595 Yeager Road

West Lafayette, Indiana 47906
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING / MONITORING

Air Force Wright Research and Development Center AGENCY REPORT NUMBER

Materials Laboratory, ATTN: WRDC/MLBM, Wright-Patterson
Air Force Base, Ohio 45433-6533
Office of the Director of Defense Research &Engineering

(Research & Advanced Technology) , Pentagon, Washington, _ __

11. SUPPLEMENTARY NOTES (-DC 20301-3080

Hard copies available from HTMIAC (price $45.00);
DTIC assigned HTMIAC Source Code: 413571

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is
unlimited.

13. ABSTRACT (Maximum 200 words)

This Final Technical Report contains details of technical work accomplished and

results obtained inthe performance of HTMIAC Special Study Item OOO1AE:
'Prediction of Failure Mechanisms and Repair of Damages of Composite Aircraft

Structures.t) Because only a small portion of the funding for the Special Study
was actually'awarded, this Special Study was performed only partially. Neverthe-

less,-this report contains detailed results of the following completed research

works:

(1) Mixed-Mode Fracture of Notched Unidirectional and Off-Axis Laminates

under Tensile Loading.
(2) Thermo-Elastic Model for Multidirectional Coated Fiber Composites:

Traction Formulation.

(3) Constrained Matrix Cracking.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Composite structure, composite laminate, graphite/epoxy 84
composites, Nicalon/BMAS composites,'failure mechanisms;' 16. PRICE CODE
failure prediction, mechanical properties.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 Standard Porm 298 (Rev .-89)

2461,02



PREFACE
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0001AE: "Prediction of Failure Mechanisms and Repair of Damages of Composite

Aircraft Structures." Because only a small portion of the funding for the

Special Study was actually awarded, this Special Study was performed only

partially. Nevertheless, this report contains detailed results of the

following completed research works:

(1) Mixed-Mode Fracture of Notched Unidirectional and Off-Axis Laminates

under Tensile Loading.

(2) Thermo-Elastic Model for Multidirectional Coated Fiber Composites:
Traction Formulation.

(3) Constrained Matrix Cracking.
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Development Center (WRDC), Materials Laboratory, ATTN: WRDC/MLBM (Mechanics

and Surface Interactions Branch), Wright-Patterson Air Force Base, Ohio 45433-

6533. It was funded through WRDC/Materials Laboratory MIPR No. FY1457-87-N-

5057 Amendment 01. The Air Force Program Manager was Dr. Stephen W. Tsai. In
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contract is awarded to Purdue by the Defense Electronics Supply Center, Dayton,
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SECTION I

MIXED-MODE FRACTURE OF NOTCHED

UNIDIRECTIONAL AND OFF-AXIS LAMINATES

UNDER TENSILE LOADING

L1



ABSTRACT

The mixed-mode fracture of matrix dominated composite laminates containing central

holes and cracks was studied using some graphite/epoxy off-axis AS4/3502 balanced
symmetric laminates, [±02s. The uniaxial failure of a 0 laminate, which is the main

load carrier of multidirectional laminates, was also investigated. Interesting results were
observed for the [-02]s laminates with a central normal crack. In this paper, the terms
"notch sensitivity" and the "notched shape sensitivity" are distinguished, defined and

classified with examples. Anisotropic finite width correction factors were applied to

interpolate the experimental data. In general, the predicted notched strength and the failure

initiation locations correlate reasonably well with the experimental results.

I
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1. INTRODUCTION

Mixed-mode fracture in composite laminates has been an interesting subject since it
involves several stresses and strength components as well as their interactions. In the case
of composite laminates containing stress concentrations, the failure analysis can be
performed using the stress state .t a point or using the average stress along a characteristic

distance. These have been well documented in the literature under mode I failure

condition.
The failure of composite materials can basically be classified into fiber dominated

mode and matrix dominated mode. The mixed-mode fracture of fiber dominated
composite laminates containing stress concentrations has been studied by Morris and
Hahn [1] under a uniaxial tensile loading and by the present author [2] under a uniaxial
and combined in-plane loading conditions. The former analysis was based on laminate
stress whereas the later was based on ply-by-ply level stresses. Good correlation between
theory and experimental data has generally been obtained in Ref. [2]. Very few research
has been reported for the failure of matrix dominated composite laminates containing
stress concentrations. Mar and Lin [3] investigated experimentally the fracture strength of
boron/aluminum [±45]2s laminate with a central circular opening. Recently, Chang and

Chang [4] utilized a progressive failure model to predict the strength of two matrix
dominated laminates with a central hole. Other relevant work may be found from a review
by Awerbuch and Madhukar [5]. In addition to the matrix dominated composite
laminates, the failure of unidirectional 00 laminates with stress concentrations is also an

important subject.

In this paper, an experimental program using the graphite/epoxy AS4/3502 off-axis
symmetric laminates, [±02]s, containing either a circular hole or a central crack was

designed to study the mixed-mode failure mechanism and fracture strength of matrix
dominated composite laminates under tensile loading. The point strength model and the
minimum strength model [6] were applied to correlate the experimental results with
theory. The failure of [08] laminates with through-the-thickness holes and cracks were

also investigated. From this study, the term "notch sensitivity", normally used by

people, can be classified into "notch sensitivity" and "notched shape sensitivity". They
can be defined and distinguished remarkably utilizing the result of the present experimental

data.

2. STRESS ANALYSIS
The stress distribution of infinite anisotropic plates conta"..ing an elliptical opening

has been derived earlier [2, 6] under in-plane combined loading condition. The

3



coordinates system of a laminate subjected to uniaxial loading is illustrated in Figure 1.

In the case that an orthotropic laminate is symmetric with respect to its mid-plane, the

extensional and bending stiffnesses are uncoupled. Using Lekhnitskii's complex

potentials [7], the stresses, given in the principal

coordinates of the opening (1-2 axes), were obtained in the following

0y = 2 Re [±1,2 1'(Zl) + 0'2
2 '2 (z2)]

a 2 = 2 Re [01'(Zl) + 02'(z 2)] (1)

( 6 = -2 Re [9101'(zl) + 4202'(z 2 )]

where 01' and 40' denote the derivatives of the complex potentials 01 and 42 with respect

to z1 and z2, respectively, and

01l) 1- 929I 1
91-91€1(z0) =

gl1g2 l

(2)

02(Z2)=
91 L~2 2

where
= - (o;/2) cos~y (acosxV + ibsinAV)

(3)
- (a,/2) sin v (acos + ibsinV)

and

zi+ VZ2- a2i- i2i 2
i = a-itb , i = 1,2 (4)

zi = x' + 9, ty

where x' and y' are along the principal axes of the opening, i.e., 1 and 2 axes,

respectively. The parameters g, and g2 are the complex roots of the characteristic

equation
a, - 2a161j3 + (2a12 + a66) 2 - 2a269. + a22 = 0 (5)

where aj, i, j = 1, 2, 6, are the components of the compliance matrix of the anisotropic

laminate.

The stress analysis is pursued using a superposition technique. The solution is given

in index notation as:

Ii = oi° + Oi i = 1,2,6 (6)

4



where a i denotes the local laminate stress; the parameters oi ° and ai* are the stress

components due

to the uniform stress field and the opening, respectively. The solution of these stress

components has been obtained in closed form in References [2, 6, 10]. In the above

equations, a and b are the semi-major and semi-minor axes of the elliptical opening
respectively. The parameter b., Figure 1, denotes a characteristic length between the

characteristic curve and the opening contour, and 0 is the angle between the 1-axis and the
normal vector of the characteristic curve. In addition, Vg designates the slanted angle of the

elliptical opening measured from the y-axis.
The tangential stress along the characteristic curve can be obtained using the stress

transformation rule as
00 = {at(a + bo)2sin2o + o2(b + bo)2CoS20 - 2a 6(a + bo)(b + bo)sinO cos0}/7 2  (7)

where

72 = (a + b.) 2sin2O + (b + bo) 2cos20 (8)

3. COMPLEX ROOTS
In the case of orthotropic laminate, a16 = a26 = 0, the characteristic equation,

Equation (5), reduces to
a,, + (2a 12 + a66). 2 + a22 = 0 (9)

Equation (9) has been solved analytically by the present author [8]. In this section, the

complex roots are solved using a different method, which is probably simpler than the

earlier one. Between the two principal roots the following relationship exists [71:

2V al 1  (10)

i(1i] + j 2) a1 l " _ a11

In terms of engineering properties, these equations can be rewritten as:

2 1 2 E!

2 + g 2 = 2v -'Ex (15)
1 2 XYGX



where Ex, Ey and Oxy are the laminate extensional and shear modulii, respectively, and

VXY denotes the effective laminate Poisson's ratio.
The two principal complex roots, g, and g2, can be solved using Equation (11). The

solution is

4j-V -x-2xG2F + V x2v
xyx y xy

(12)

Substituting Equation (12) into Equations (1-8), we obtain the stresses in the principal
axes of the opening as well as the tangential stress along the characteristic curve. As an
example, the tangential stress of a graphite/epoxy [±452]s laminate was generated in

Figure 2 along different characteristic curves. The material properties are given in Table

1.

4. FAILURE MODELS

In the domain of matrix dominated fracture, the controlling fracture propagating
planes could occur at various different angles within a laminate. These angles depend on
the ply orientations. This kind of behavior will be illustrated later in Section 6 and
explained with more details. This type of failure mechanism lead us believe that the
strength has to be predicted using a model based on ply-by-ply analysis. Any failure
criterion developed on the laminate basis [5] may not be applicable. The reasons are: (1)
there are more than one controlling fracture propagating planes and; (2) the lack of
strength uniformity between plies along any direction. In other words, only a fraction of
the laminate may fail along a direction while the others remain intact in the same plane.
From the stress analysis of the [±452]s laminate, shown in Figure 2, one may think that
the failure of a [#] s laminate will initiate on the axis normal to the applied load, which is

based on the concept that failure will occur at the location of the maximum tangential
stress. However, this idea will be shown incorrect in Section 6. In an earlier work [6],
two models were proposed for the strength prediction of multidirectional composite
laminates containing stress concentrations. The application of those models for the

present study will be discussed in the following subsections.
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4.1 Point Strength Model (PSM)

The ultimate strength ratio of a notched composite laminate versus unnotched

laminate is predicted using the first-ply-failure (FPF) strength of the notched laminate
divided by the FPF strength of the corresponding unnotched laminate. The FPF strength
of a notched laminate is calculated at the point with a characteristic length b1 along the

assumed fracture propagating plane, Figure 3. In the case of matrix dominated failure,

the fracture propagating planes occur along the fiber orientations. The notched strength
reduction factor (SRF) can be written explicitly as

0N' FPF notched strength at the point (0, b1)
SRF = -------- = --------------------- ------------------------- (13)

0O  FPF unnotched strength

where qN' and a. denote the ultimate notched strength and the ultimate unnotched

strength, respectively. The relations stated in Equations (13) and (15) are based on the

assumption that the ratio of the FPF strength is the same as the ratio of the ultimate

strength.

4.2 Minimum Strength Model (MSM)

Once the laminate stresses are computed using Equations (1-6), the classical

laminated plate theory is applied to calculate the ply stresses. Then an appropriate FPF
criterion is utilized to compute the FPF strength at many selected points along the

characteristic curve, denoted by the

dotted line in Figure 1, which can be expressed as

x2  y2

- +- ---------- 1 (14)
(a + bo) (b + bo)

where bo (characteristic length) is a distance between the opening and the characteristic

curve. In the case of circular openings, 90 points were analyzed for a range of
0<:50<180' along the characteristic curve, whereas in the case of sharp cracks, 180 points

were analyzed for the same range of angle. The minimal FPF strength is obtained from

the comparison of the solutions calculated at these points. This minimal FPF notched

strength divided by the FPF strength of the corresponding unnotched laminate yields the

strength reduction factor, which is proposed to be the same as the ultimate strength

reduction factor.

qN' Minimal FPF notched strength

7



SR F ----- -.----------- - ----------------. (15)

ao  FPF unnotched strength

where the parameters have all been defined. This model can be applied to predict the SRF

and the initiation locations of failure of a notched laminate.

Several FPF criteria are available in the literatures. The quadratic failure criterion

(Tsai-Wu) with the stress interaction term F12* = - 0.5 was adopted in this analysis.

5. FINITE-WIDTH CORRECTION FACTORS

The finite-width correction factors (FWCF) of anisotropic or orthotropic laminates

containing an elliptical opening have been derived in an earlier paper [8]. The accuracy of

the analytical solution was assurred by a finite element solution as well as experimental

data. These correction factors were applied to interpolate the testing data.

Using the material properties listed in Table 1, the finite-width correction factors,
KT/KT**, for the AS4/3502 [#2]s family of laminates and an isotropic plate with a circular

hole were plotted in Figure 4. The comparison shows that the FWCF for some of the
[-+j s family of laminates are higher than that of the isotropic plate, and some are lower.

For instance, the FWCF of the [±302]s , [±452]s and [±6021s laminates at 2a/W = 0.5 are

1.355, 1.394 and 1.477, respectively, whereas the FWCF of an isotropic plate is 1.417
which is closest to that of the [±452]s laminate. These FWCF are applied in such a way

that they are multiplied by the testing data to obtain the infinite plate solution.

6. EXPERIMENT AND RESULTS

An experimental program was planned to study the matrix dominated mixed-mode

fracture of notched and unnotched laminates under uniaxial tensile loading. The

sensitivity of the notched strength of unidirectional composite laminates due to the

discontinuity of holes and cracks was also investigated.

6.1 Procedures

The Hercules graphite/epoxy AS4/3502 preprag (tape form) was chosen to fabricate
some L+Oijs laminates where = 0 0, 30 ', 45 0 and 60 '. Five different sizes of holes

and cracks were prepared. They are approximately 0.05, 0.1, 0.3, 0.4 and 0.6 inch. The

circular holes in the laminates were produced using diamond impregnated drills. The

central cracks were fabricated by first drilling a 0.01 inch diameter central hole and then

completing the crack by a 0.005 inch diameter diamond coated wire. All the opening-to-
width ratios of the specimens were arranged within 33 percent. After the specimens were



prepared, they were loaded in tension at a cross head speed of 10 or 20 lb/s. The material

properties were characterized and given in Table 1.

6.2 Failure Mechanism
In the case of [08] laminates containing either a circular hole or a cental crack, failure

initiates with fiber-matrix splitting at the opening edges on the axis normal to the applied

load. After the splitting occurs, the laminate is separated into load-carrying and non-load-

carrying regions. The portions on the top and below of the opening are non-load-carrying

regions. At this stage, this laminate becomes fully notch insensitive. This point is

verified in Section 7 with the notched strength plotted versus opening-to-width ratio.

Therefore, the controlling final fracture planes could occur in any place between the

endtaps at the load-carrying portions of the laminate.
All the fracture planes occur across the openings for the [±Ot s laminates studied in

this paper. Some samples of the failed specimens containing circular holes are illustrated
in Figure 5. The fracture planes all took place along the + and -0 fiber directions. The

failure initiation locations, however, are somewhat different for different hole sizes.

When the hole size is small, the opening has very little influence on the laminate strength,
and the failure initiation locations, 0, coincide with the ply-angles, i.e. 0 = ±300, ±450

and ±600 for the [±302s, [:±452]s and [±602]s laminates, respectively. When the hole

size is large, the fracture propagating planes were found tangent or nearly tangent to the
opening. The angles measured from the loading axis were ±600 for the [±3 02]s

laminates, 0 = ±46"- ±60' for the [±452]s laminates and 0 = ±38*- ±700 for the [±602]s

laminates.
The failed patterns of the [#2¢] s laminates containing a normal crack under tensile

loading are shown in Figure 6. In this case, all the failures initiate from the crack tips and

propagates along the fiber direction, i.e. 0 = 0'. For instance, the failure initiation

locations are 0 = ±30' for the [±3021s laminate.

6.3 Notched Strength

The gross strength, oN, of a laminate was calculated by the fracture load divided by

the total cross sectional area of the specimen. The finite width correction factors, Figure

4, were then applied to obtain the notched strength, aN", of the infinite plate. The results

of the [0g] laminates containing either a circular hole or a normal crack are listed in Table
2. Tables 3 and 4 contain the configuration and ultimate strength of the [±302]s, [±4521s

and [±6021 s laminates containing a circular hole and a crack, respectively.
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7. CORRELATION OF THEORY WITH EXPERIMENT
The experimental data was utilized to examine the predictions for the notched strength

using the PSM and the MSM, as well as the predicted failure initiation locations using the
MSM. The characteristic lengths, b, and b., were considered as two constants first, then
as a power function of the opening size.

7.1 Characteristic Length As a Constant
The characteristic lengths, b, and bo, were determined by the back substitution of one

notched strength data into Equations (1-10) and the strength models, Equations (13) or
(15). The comparisons of the prediction using the MSM and the experimental data are
illustrated in Figure 7 for the uniaxial [08] laminate and the [±302]s, [±452]s and [±602]s

laminates with circular openings. In these figures, the line of net strength (notch
insensitive line) represents the fracture load divided by the net cross-sectional area. The
result shows that the gross strength of the [08] laminate, Figure 7a, scatter closely to the

line of net strength, which means that the ultimate notched strength is fully notch

insensitive. The predicted notched strength for the other laminates generally agrees

reasonably well with the experimental data. The predicted initiation locations of failure for
the [±302]s laminate are from 0 = ±270 to ±590 for small hole to large hole, respectively.

These predictions are almost identical with the experimental observation, which are ±30'

and ±60' for small hole and large hole, respectively. When the hole is small, the
predicted failure initiation locations of the [±452]s and [±6 02Is laminates are at 0 = ±49'

and ±600, respectively, whereas the experimental results were at 0 = ±450 and ±600,

respectively. When the hole radius is larger than 0.2 inches, the predicted failure initiation
locations are at 0 = 900, which is less accurate than the prediction for the case with a small

hole. This is also the point that the prediction changes the slope of its curve, Figures 7c-
d, and deviates from the data. It is interesting to note that the characteristic lengths bo for
the [±30-]s and [±602]s laminates (both are 0.12 inch) are symmetric with respect to that

of the [±452]s laminate (bo = 0.08 inch).

Using the anisotropic finite width correction factor in Section 5, the predicted notched

strength (infinite width plate) can be converted into finite-width gross strength. The result
is plotted as a function of the opening-to-width ratio in Figure 8a. For convenience the
width of the plate has been chosen as unity. The gross strength of the present [±I]s

laminates lie beneath the line of net strength. This characteristic reveals that these

laminates are notch sensitive. The gross strength of these laminates were obtained by
multiplying the gross strength reduction factor by the unnotched strength, 0o, Figure 8b.

10



The predictions of the [±O] s family of laminates containing a central normal crack are

compared to the experimental results in Figure 9. The strength of the unidirectional [08]
laminate with a central crack is shown notch insensitive. For the [:s] s laminates

containing a crack, the locations of the initiation of failure, 0, can be visualized as the

same to the ply orientations (i.e., 0= ±_0). Thus, the prediction of the PSM was also

examined by the experimental data.
It is a surprise to see that the notched strength of the [±302]slaminate increases for

crack length (2a) larger than 0.12 inch. The application of the MSM does not correlate
very well with the data in this case. When the PSM was applied, the characteristic length,
b1, was measured along the fiber direction at an angle 0 = 0 ° from the crack tips. The

prediction does agree with the trend of the unexpected experimental result. In the case of
[±452]s laminate, the prediction using the PSM agrees very well with the experimental

data. Utilizing the MSM, the predicted failure initiation locations were at 0 = ±50 - ±56'
(small to large hole) and 0 = 52 - 580 for the [±452]s and L_+602 s laminates,

respectively. These results are acceptable as compared to the experimental observation,

which are ±45* and ±600, respectively.

7.2 Characteristic Length As a Power Function

In the case of fiber dominated composite laminates containing elliptical openings, the

characteristic length bo can be expressed in a simple form [9]. A laminate with an

implanted crack has been simulated very well by an elliptical opening with the aspect ratio

a/b = 50. The characteristic length bo for a laminate with a crack was found double in

magnitude compared to the one with a circular opening. Earlier investigation has shown

that excellent agreement between predicted notched strength and data was achieved if the

characteristic length bo is expressed as a function of the hole size. Following the same

approach for the fiber dominated laminates, the characteristic length for matrix dominated

laminates can be written as
bo = mo (a/ar)n (a/b)0 177  (16)

where mo and n are constants to be determined by the back substitution of two or more

data points of notched strength into the failure model, and ar is a reference radius

introduced to make the quotient in the parenthesis nondimensional.

When Equation (16) was utilized, the predicted notched strength for the AS4/3502

[±452]s and [±602]s laminates with holes and cracks were compared to experimental data

in Figures 10 and 11, respectively. The correlation between theory and data was

reasonably well. Using the bo shown in Figures 10 and 11, the predicted gross strength

reduction factor as a function of the opening-to-width ratio for these laminates with central

11



cracks are illustrated in Figure 12a. Figure 12b illustrates the magnitude of the predicted

gross strength. The deviation of these curves from the line of net strength shows that

these laminates are notch sensitive. It is of interest to see that the gross strength of the

[±6021s laminate is slightly higher than the line of net strength. The gross strength of the

[±4 52]s laminate intersects with the line of net strength at about 2a/w = 0.45. This

laminate layup also has a trend of having higher strength than the line of net strength for

2a/w > 0.45.

8. DISCUSSIONS AND CONCLUSION

The mixed-mode fracture of matrix dominated composite laminates containing
stress concentrations was studied using the AS4/3502 [±¢Ot]s family of laminates with

central holes and normal cracks. In the case of circular holes, all the gross strength of the

laminates considered here are lower than the line of net strength except the [08] laminates,

which scatter closely along the line of net strength. In the case of central normal cracks,

some interesting results were observed:
(1) The notched strength of the [±302]s laminate, Figure 9, increases for crack

length, 2a, larger than 0.12 inch.
(2) The gross strength of the [±302]s and [±602]s laminates containing central

cracks are higher than the line of net strength, Figures 9 and 12. This surprising result,

however, agrees with the prediction using the PSM.

Fiber-matrix splitting was observed for unidirectional [0] laminates at the edges

of the holes and at the crack tips. After the splitting process extends to a large proportion

of the laminate, the laminate separates into load-carrying and non-load-carrying regions.

Regardless the shape of the opening, the total volume of the load-carrying sections are the

same for a laminate with a given opening length, 2a. This is why the ultimate strength of
a 00 laminate is notch insensitive.

If the performance of a laminate is affected by the stress concentrations, it is
"notch sensitive". For example, a [±302]s laminate is notch sensitive because its ultimate

strength scatters away from the line of net strength. If the performance of a notch laminate

is affected by the change of opening shape with a same opening length (2a), the laminate

is defined as "notched shape sensitive". We conclude from this study that a [08] laminate

is notch insensitive and notched shape insensitive, Figures 7a and 9a. The notched
strength of the [±452]s laminate is notched shape insensitive, Figure 10, although it is

notch sensitive, as shown in Figures 8 and 12. The notched strength of the [±602]s

laminate is notched shape sensitive, Figure 11, and notch sensitive, Figures 8 and 12.

12



From this result, a reasonable thought arises that any multidirectional
graphite/epoxy laminate containing a major proportion of 0' and ±450 laminae is likely to

be notched shape insensitive. This idea agrees with the data presented in References 3,
10 and 11 using [±45/021s, [0/90/±45]s and [0/90/±45]2s laminates, respectively. We

also conclude from this study that most laminates are notched shape sensitive. Although a
unidirectional 0* laminate is notch insensitive, it can become notch sensitive and notched
shape sensitive in the presence of constraint plies, such as [0/90 2/0]s laminate [10]. In the

second part of this work,very good agreement between theory and experimental data has
been obtained for the mixed-mode fracture of matrix dominated composite laminates under
compressive loading, which will be published elsewhere.
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FIGURE CAPTIONS

Figure 1. Coordinates system of an infinite composite laminate containing an opening.
Dotted line is the characteristic curve.

Figure 2. Tangential stress distribution, ao, at various characteristic curves of a
graphite/epoxy [±452]s laminate with a circular hole.

Figure 3. The characteristic length b1, used for the Point Strength Model, is measured
along the assumed fracture propagating plane.

Figure 4. Finite-width correction factors for AS4/3502 [-+kls laminates and isotropic
plate with a central hole.

Figure 5. Failed patterns of the Gr/Ep AS4/3502 [±30]s (left) and [±60]s (right)
laminates with a circular hole.

Figure 6. Failed patterns of the Gr/Ep [±302]s (left) and [±602]s (right) containing a
central crack.

Figure 7. Comparison of the predicted notched strength (MSM) and the experimental data
for the [#2]s laminates with a central hole.

Figure 8. Gross strength reduction factor and magnitude versus opening-to-width ratio
for the [#421 s laminates with a central hole.

Figure 9. Correlation of the predicted strength (PSM and MSM) and the experimental data
for the [-js ] laminates containing a central crack.

Figure 10. Experimental data and predicted notched strength using a modified b. (MSM)

for the [±452]s laminate.

Figure 11. Experimental data and predicted notched strength using a modified b. for the
[±6021s laminate.

Figure 12. Predicted gross strength reduction factor and magnitude as a function of the
opening-to-width ratio for the [±*2]s laminates with a central crack.
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Table la. Elastic properties of the graphite/epoxy AS4/3502 lamina.

Parameters GPa (106 psi)

Longitudinal modulus, Ell 143.92 (20.87)
Transverse modulus, E22 11.86 (1.72)
In-plane shear modulus, G12  6.69 (0.97)
Poisson's ratio, V 12  0.3257

Table lb. Strength properties.

Parameters MPa (Ksi)

Longitudinal tensile strength, X 1861.6 (270)
Longitudinal compressive strength, X' 1482.4 (215)
Transverse tensile strength, Y 51.7 (7.5)
Transverse compressive strength, Y' 206.8 (30)
In-plane shear strength, S 65.0 (9.4)

Table 2. Experimental results* for the graphite/epoxy AS4/3502 [08] laminate containing
a circular hole or a central crack.

Opening Plate Gross
Opening length width strength YN Variation
shape 2a (mm) (mM) 0 N (MPa) O (%)

Circular 0 24.97 1861.6 1.000
Circular 1.17 12.37 1627.2 0.872 + 0.9
Circular 2.52 12.37 1461.7 0.784 + 1.3
Circular 7.52 24.97 1434.1 0.769 + 0.7
Circular 10.31 31.80 1399.6 0.752 + 5.6
Circular 15.42 46.23 1234.2 0.661 + 8.3
Crack 0 24.99 1861.6 1.000
Crack 1.22 12.32 1496.2 0.803 + 5.0
Crack 2.82 12.32 1323.8 0.709
Crack 7.49 24.97 1282.4 0.689 + 0.0
Crack 9.91 31.80 1068.7 0.572 + 0.4
Crack 15.52 46.23 1220.4 0.653

* Average of two specimens.
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Table 3. Experimental results* for the Gr/Ep AS4/3502:(a) [+302]s, (b) L+452] s , (c)

L+6O 21s laminates with a circular hole.

Hole Plate Gross Notched
Layup diameter width strength strength aNj Variation

2a (mm) (mm) aN (MPa) aNOO(MPa) ao (%)

(a) 0 24.97 -- 392.3 1.000 + 0.8
(a) 1.17 12.34 308.9 364.9 0.929 + 1.8
(a) 2.52 12.37 280.6 343.4 0.875 + 0.5
(a) 7.62 24.97 206.3 268.1 0.683 + 1.3
(a) 10.34 31.80 229.6 258.8 0.659 + 4.9
(a) 15.47 46.20 244.8 277.8 0.708 + 0.8
(b) 0 24.97 -- 130.3 1.000 + 3.7
(b) 1.17 12.37 120.7 121.4 0.934 + 2.2
(b) 5.18 12.37 97.9 102.2 0.786 + 1.9
(b) 7.65 24.99 84.1 93.3 0.717 + 6.2
(b) 10.36 31.80 76.5 86.5 0.666 + 2.0
(b) 15.44 46.23 78.6 89.4 0.687 + 2.9
(c) 0 24.97 -- 51.3 1.000 +0.8
(c) 1.17 12.34 50.9 51.4 1.003 + 1.6
(c) 2.52 12.34 43.9 45.9 0.897 + 4.7
(c) 7.59 24.99 36.8 41.2 0.803 + 1.9
(c) 10.36 31.80 33.1 37.7 0.736 + 6.6
(c) 15.52 46.25 33.7 38.8 0.756 + 4.2

* Average of two specimens.
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Table 4. Experimental results* for the Gr/Ep AS4/3502:(a) [+302]s, (b) +452]s, (c)
L+6 0 21s laminates with a center crack.

Crack Plate Gross Notched
Layup length width strength strength 'YN* Variation

2a (rm) (mm) aN (MPa) aN*(MPa) ao (%)

(a) 0 24.99 -- 392.3 1.000 + 0.8
(a) 1.29 12.32 348.2 349.6 0.890 + 2.4
(a) 2.59 12.32 324.7 327.5 0.834 + 6.4
(a) 7.62 24.99 326.1 339.9 0.872 + 2.5
(a) 10.14 31.83 332.3 347.5 0.892 + 0.2
(a) 15.14 46.23 350.9 368.2 0.945 + 2.4
(b) 0 24.99 -- 130.3 1.000 + 3.7
(b) 1.47 12.32 116.5 116.5 0.900 + 4.5
(b) 2.74 12.32 99.3 101.4 0.777 + 0.4
(b) 7.54 24.99 92.4 95.8 0.742 + 3.2
(b) 10.06 31.80 87.6 91.0 0.702 + 2.6
(b) 15.16 46.25 88.9 93.8 0.719 + 1.3
(c) 0 24.99 -- 51.3 1.000 +0.7
(c) 1.35 12.32 52.9 53.2 1.038 + 1.6
(c) 2.67 12.32 47.7 48.6 0.949 + 0.2
(c) 7.47 24.99 42.3 43.9 0.858 + 3.3
(c) 10.03 31.80 39.4 41.2 0.804 + 4.7
(c) 15.16 46.25 41.3 43.4 0.846 +3.9

* Average of two specimens.
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Figure 1. Coordinates system of an infinite composite laminate containing an opening. Dotted line
is the characteristic curve.
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Figure 2. Tangential stress distribution, cr , at various characteristic curves of a graphite/epoxy

[_+432 s laminate with a circular hole.
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Figure 3. The characteristic length bl, used for the Point Strength :.&-odl, is measured along the
assumed fracture propagating plane.
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Figure 4. Finite-width correction factors for AS4/3502 [±o2]s laminates and isotropic plate with a
central hole.
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lip,

Figure 5. Failed patterns of the Gr/Ep AS4/3502 [E.±30J-s (left) and [±460.Js (right) laminates with

a circular hole.

UU

Figure 6. Failed patterns of the Gr/Ep [30230s (left) and [.60,( s (ight) containing a central crack.
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Figure 7. Comparison of the predicted notched strength (.MSM) and the experimental data for the
[±021s laminates with a central hole.
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Figure 9. Correlation of the predicted strength (PSM and MSM) and the experimental data for the
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Figure 10. Experimental data and predicted notched strength using a modified bo (MSM) for the

[±452]s laminate.
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THERMO-ELASTIC MODEL FOR

MULTIDIRECTIONAL COATED FIBER

COMPOSITES: TRACTION FORMULATION
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ABSTRACT

In this work a companion model to that given earlier is developed to approximate the thermoelastic

response of a composite body reinforced by coated fibers oriented in various directions. The

fundamental representative volume element is a three-phase concentric circular cylinder under

prescribed surface tractions which are independent of the axial coordinate. The analysis leads to a

lower bound calcualtion of the effective moduli, which together with the upper bound results,

provides a more precise estimate of the overall composite properties. A parametric study has been

further conducted to illustrate the effect of different coating materials and thicknesses on the

effective properties and micro-stress distribution within the constituents of a three-dimensional

fibrous composite subjected to a uniform temperature change.
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1. INTRODUCTION

Fiber reinforced composites have been widely used as structural components owing to their high

specific stiffness and strength. In most of the applications, the fibers are uncoated. Recently,

however, there has been a growing demand for coated fibers as a reinforcement in some new

application areas such as electrical composites, metal matrix composites (MMC) and ceramic matrix

composites (CMC) intended for high temperature applications.

In electrical composites, nonconductive fibers are coated with conductive metals to obtain the

desired level of conductivity of the composite at reduced material cost. In MMC and CMC, the

fiber coating can serve as diffusion barriers for fiber-matrix combinations that otherwise may be

incompatible due to excessive reactions leading to fiber degradation. The coating can also act as a

protective barrier for the fiber and prevent it from oxidation, thus enabling it to to be used for

extended periods of time in oxidizing environment. Coatings of different materials and of varying

amounts have also been applied to the fiber to prevent or control the degree of bonding at the fiber-

matrix interface leading to substantial improvements in the strength and damage tolerance of the

composites [1-3]. The use of coatings as bonding control layers has also been successfully

demonstrated for Boron/Epoxy [4], HT-S Carbon/Epoxy [5] and GY-70 Graphite/Epoxy [6]

composites. For theoretical analysis, the interphase region between the fiber and the matrix can

also be modeled as a coating layer [7]. Quite often, the interphase region is a product of the

processing conditions involved in the manufacture of the composite.

A coated continuous fiber composite has been modeled by four concentric cylinders consisting of

fiber, coating, matrix and surrounding composite body by Mikata and Taya [8]. All the

thermoelastic properties of the surrounding body (composite) were determined by the use of rule of

mixtures. The solution for the stress distribution for this unidirectionally aligned fiber composite

was determined with the composite subjected to three independent axisvmmetric boundary
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conditions, namely, uniform temperature change, uniaxial applied stress and equal biaxial applied

stress. An analytical model for composites reinforced in three orthogonal directions (3-D) and

containing regions with degraded stress transfer characteristics across the fiber-matrix interface

was developed by Chatterjee and Kibler [9]. In the DCAP model [9], upper and lower bounds on

the effective elastic moduli and thermal expansion coefficients are obtained by assuming suitable

displacement and stress fields and minimizing the potential and complementary energy,

respectively.

The problem of a multidirectional coated fiber composite was recently treated by Pagano and

Tandon [10). The fundamental representative volume element was a three-phase concentric circular

cylinder under prescribed displacement components. By use of the theory of elasticity, effective

thermoelastic properties of the composite were determined and the microstress distribution within

the constituents evaluated with the composite subjected to externally applied uniform mechanical

and/or hygrothermal loading. This study reported results based on the displacement boundary

conditions on the representative volume element which lead to an upper bound of the elastic

stiffnesses.

In this paper, we will consider traction boundary conditions on the surface of the representative

volume element. This approach will lead to a lower bound estimate of the composite effective

moduli and together with the upper bound result will provide the bounding solutions for the

composite properties. The composite cylinder assemblage model is, of course, a geometric

idealization of a real fiber reinforced material. The experimental measurement of composite moduli

should lie within the spread of the bounds and the tightness of the bounds will provide a measure

of the accuracy of the analysis and the assumed geometric model.

The general solution for the stress and displacement field in a three-phase circular cylinder, under

surface tractions which do not vary along the generator, will be presented first. Upper and lower
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bound estimates of the effective thermoelastic properties of a unidirectional and a three-

dimensional isotropic composite will be discussed next. Graphite/Epoxy and Nicalon/BMAS are

the two material systems which we have chosen for the analysis. Finally, parametric study will be

conducted to examine the influence of coating properties on the effective moduli and stress

distribution within the constituents for the composite subjected to a uniform temperature change.

2. THE COMPOSITE MODEL

The composite model used in the analysis is similar to the one used by the authors in the

displacement formulation [10] wherein a coated, continuous fiber reinforced composite is modeled

by a representative volume element composed of N concentric circular cylinder elements, as shown

in Figure 1. The fiber (innermost cylinder), coating and the matrix (outermost cylinder) are denoted

by the indices p = 1, 2, and 3, and their outer radii by r1 , r2 , and r3 , respectively. The

composite volume between the elements is further denoted as the interstitial matrix region. The

matrix in the composite cylinder as well as in the interstitial region could, in turn, be

reinforced by particles.

Each element orientation, j , is defined via the two cylindrical angles Q and 4) with respect

to a fixed x, - x2 - x3 coordinate system. The local element cartesian coordinate system is

represented by X1 -X 2 - X3 . It should be noted that the local fiber axis, X1 , coincides with the

z - coordinate in the local cylindrical system, whereas, X2 - X3 is the r - 0 plane, as shown in

Figure 1. The indices j and p will be used as superscripts on all quantities to identify that

particular quantity with the orientation of the composite assemblage element and the constituents

within the element, respectively. However, for the sake of brevity in writing, they will be omitted

unless needed for clarity. As a rule, a repeated subcript index will denote summation with respect

to that index. However, a repeated supercript index will not imply summation. If we denote

Qkn = cos( Xk, x, ), then from geometry in Figure 1, we have
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Cos Q sin Q cos sin f sinQk. = -sin Q Cos Q Cos cos Q sin l

0 sin cos /

3. BOUNDARY VALUE PROBLEM

The fiber, coating and the matrix are assumed to be linearly elastic, homogeneous and perfectly

bonded. In general, the constituent materials may have transversely isotropic elastic and thermal

expansion coefficients. Hence, the constitutive relations for each constituent material are given by

Cz = C11 (Cz - e.) + C12 (CS- e,) + C12 (CO - ee)

Or = C12 (z - ez) + C22 (-r - e.) + C23 (4 - eq )

(50 = C12 (e- - ez) + C23 (E - e.) + C22 (eO - eo) (2)

" O =  C44 '66

TZO = C55 Yzo

Trz = C55 Yr

where Cnn (m, n = 1, 2, .. 6) are the elastic stiffness constants of the individual material and

ez, er and e8 are the expansional (non-mechanical) strain components along the longitudinal (z)

and transverse directions (r - 0 ), respectively. In these relations the composite sphere model

introduced by Hashin [11] can be employed to compute the effective properties of the particle

reinforced matrix. Further, for a transversely isotropic material

er =e

C44 = 0.5 (C 22 - C2 3 ) (3)

In addition to (2), the elastic response of the constituents must satisfy the equilibrium equations

Cr.r + _ rL,O + -L ( a- ) = 0 (4a)
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'rer +- ae,e +- I r (4b)
rr

1L TOO + I = 0 (4c)

where differentiation is indicated by a comma and the stresses arc functions of r and 0 alone. The

engineering strain-displacement relations are given by

Ez = Uz. 2

r rLe - -f- u e,e +-ju 1

(5)
1 1

S ur, +Uer ue

UOz+ UL u

4Yz Urz + Uzi

Substituting Eqs (2) and (5) into (4), the governing field equations for Ur, U0 and uz can be

expressed as

Ur r- Ur ) + C44 U rO + (C23 + C44 ) UOr
r2 r2 r (6a)

(C 2 2 + C 4 4 ) ue + C 12 uZ. rz 0=
r2

r 2

(6b)

C22 + C44 UT o
) + C 1 2 1 Uz,0z = 0

r2r
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C5'5 ( Urrn + L Ur~z + -LUOZe + U~Y'+ -LU + rL t1Z,.e 0 (60)

We now seek a solution of Eqs (6) subject to prescribed surface tractions. Let the composite

material volume be now subjected to a set of boundary conditions of the form

0
Ti (S) = Cik nk (7)

where nk is the unit outward normal vector on the boundary surface S, a0 are a set of constants

and Ti denote the components of the boundary traction vector. For (7) prescribed, it can be

shown that 0

aik= ( 0 = constant (8)

where an overbar denotes the average value over the whole volume.

To facilitate the analysis, we now introduce in Figure 2 an equivalent homogeneous medium,

having the effective composite properties, as a comparison material. We further assume that the

tractions acting on the radial boundary@ of the composite cylinder elements, Sc , can be

approximated by the boundary conditions of the equivalent material, i.e.,

(i) () ()
i 0 ik nk on Sc (9)

where i represents the traction components on the boundary of the j element in local

) th
coordinates; nk is the unit outward normal vector on the boundary surface of the jtelement

(j)
and aik am given by

(j) (j) (0)

aik - Qim Qkn F0 0-=1,2 ....... N) (10)

@ Although Eq 9 is only applied on the radial boundary SC, the validity of (8) for all stress components can be

established for the present class of boundary value problems [12]
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where the components of the transformation matrix knare defined in (1).

Thus, for a uniform state of stress applied to the composite volume, the boundary conditions on

the surface of the cylindrical elements are independent of the axial coordinate. Beside those on the

radial boundary, the complete specification of boundary conditions requires the prescription of the

following resultants acting on any cross-section:

F 1 = Ozz r dr dO

M 2 'rzO r 2 drdO

(11)
f: fo

M2 = p zz r2 sine dr dO

M3 = Ozz r2 cosO dr dO

where F, is the axial force; M, the torque ; and M2 and M3 the resultant moment about the X2

and X3 axis, respectively. The four quantities, namely, F1, MI, M2 and M3 can be calulated

from (10). The resultant forces in the X2 and X3 directions, F2 and F3 respectively, are non-

zero, but do not provide independent information, e.g., the force component F3 is given by

F3 = f2(' sine + ze cos O ) r dr dO (12)

If we now multiply Eq (4c) by sin 0 and, after a slight manipulation, substitute the results into

(12), we find that

3= r ,T" ]r" sine dO (13)
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Since T. is continuous at interfaces and r2 T. = 0 at the origin, this becomes

F 3 = r z( r 3, ) sin e dO (14)

Thus, F3 is completely defined by the boundary conditions on r = r3 and cannot be independently

prescribed. Similarily, it can be shown that

F 2 - r 3  ,(r 3,0) cos 0 dO (15)

and cannot be arbitrarily prescribed if 'rt(r 3, 0) is specified. Hence, the proper end conditions are

the ones given by Eqs (11).

4. GENERAL SOLUTION

We have three displacement fields (in materials (1), (2) and (3) or fiber, coating and matrix,

respectively). The form of the governing field equations (6) and boundary conditions (9) and

(11) lead to a general solution of the type

0. p) 0. p) (j. p) (J. p) .p) .p)
Ur(r, 0, z) = UI(r) cos 20 + U2(r) sin 20 + U3(r) + U4(r) cos 0 + Us(r) sin 0

(, P) (j. P) (J. P) (j, P)

+ U6(r) z cos 0 + U7(r) z sin 0 + U8(r) z2 cos 0 + U9(r) z2 sin 0

(16)

(J.p) (j. p) ) jp) 0. p) Q. p)
ue(r, 0, z) = VI(r) sin 20 + V2(r) cos 20 + V3(r) + V4(r) sin 0 + V5(r) cos 0

(J. p) (j.p) (j. p) . p) 0. p)

+ V6(r) z sin 0 + V7 (r) z cos 0 + V8(r) z2 sin 0 + V9(r) z2 cos 0 + z V10(r)
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(j. P) (, P) (J. P) (. p) (J. P) (P)

uz(r, 0, z) = Wi(r) sin 20 + W2(r) cos 20 + W3(r) + W4(r) sin 0 + W5 (r) cos 9

(jp) (. p) (j.p) (16)
+ W6(r) z sin 0 + W7(r) z cos 0 + z W10 (r)

where j = 1,2, ............ N; p=1,2,3

0. P) 0 V)-~',)
and UI (r), V2(r) ....... 10(r) are defined in the Appendix.

A general solution of this form has been successfully employed by Pagano [13] to determine the

stress field in a cylindrically anisotropic body under two-dimensional surface tractions. Using the

strain-displacement equations (5) and the stress-strain relationships (2), the stress field is

expressed as

(, P) (, P) (, P) (J, P) (J. P) ( P)

0z = (X(r) cos 20 + O2(r) sin 20 + (X3(r) + a 4(r) cos 0 + a 5(r) sin 0

(. P) (j. P) (j. P) (J. P) (J. P) ( P)

Or = I(r) cos 20 + 2(r) sin 20 + 3(r) + 4(r) cos 0 + p 5(r) sin 0

6., P) 0j, P) GJ P) (,P) 0J. P) 0j. P)

0 = 1 P(r) cos 20 + P2(r) sin 20 + P 3 (r) + p4 (r) cos 0 + P5(r) sin 0
(17)

(ip) (.p) (. p) (j, p) (. p) (. p)

TG = "1(r) sin 20 + y2(r) cos 20 + y3(r) + y4(r) sin 0 + y5(r) cos 0

(J. P) (j, P) (. P) (. P) (j. P) ( P)

TOz = 41(r) cos 20 + 42(r) sin 20 + 3 (r) + 4(r) cos 0 + 45(r) sin 0

(.sP) (. P) (. P) (, P) ( P) (. P)

rz= 8
1(r) sin 20 + 82(r) cos 20 + 83(r) + 84(r) sin 0 + 85(r) cos 0

(, P) (. P) (. p) (. P) (. P)

where al(r), a 2(r) ........... 63 (r), 84(r), 85(r) are defined in the Appendix. The constants

(, P) (, P) (. p) (. P) (. P) (, P) (. P) (j. P)

A,, A2 .... Y2, Y3 used to define the coefficients UI(r) ...W10 (r) in Eqs (16) and cz1(r) .... 85(r)

in Eqs (17) are to be evaluated by the following interface/boundary conditions:
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i) Displacements and traction must be continuous across the fiber-coating and coating-matrix

interfaces, which lead to the following equations:

(jv 1) 0) 0.2) 0)
Pk(rl) = Pk(rl)

(k-'1.2. ........... 10) (18)
0,2) () (j.3) U ) (j 1.Z ..... N

Pk(r 2 ) = Pk(r2)

where P=U, V, W, , y and 8 ifk= 1,2,3,4,5

P=U ifk = 6, 7, 8, 9

P=V, W ifk=10

ii) To avoid singularities, displacements and stresses must be bounded at the origin which

results in the following relations for j = 1, 2,.... N :

0.,1) 0j.1) 0j. 1) 01, 1)
A 2 = A 4 =0; B 2 = B 4 = 0;

0j, ) .. " ) Ij ) 0.1)
P2 =  4 =0; Q2 = Q= 0; (19)

D2 = F2 = H 2 = S2 = T 2 = X2 =Y2 = 0.

iii) For convenience, we neglect the displacements reflecting rigid body motion, which implies
that

0, p) 0. p) 0. P) G, P) Q. p) 0. P) 1, = 2... N

F1 = H, = P5 = Q5 = X 3
= Y3 = 0. (p=Ior2or3) (20)

within any one constituent.

iv) Boundary conditions are prescribed over the cross-section (Eqs 11) and on the radial surface

(Eq 9) of the cylindrical elements. Equilibrium of the entire body , however, imposes certain

implied connections among the traction components, e.g, consider the portion of the solution in

which the stress field is represented by the following components [13]:
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Or(r, e ) =o(r) cosO

oe(r,e)=oe(r) cose (21)

o(r,e) = r0 (r) sine

Putting these functions into (4a) and (4b) and eliminating (o (r) establishes the relation

d [r or (r)] = [r Te (r)] (22)

which, on integration over the cross-section becomes

r3 [ yr (r 3)- T8 0(r 3) 1 = 0 (23)

since tractions are continuous at the interfaces. Reversing cos 0 and sin 0 also leads to an equation

of the form of (23). Hence, the coefficients of the terms involving sin 0 and cos 0 , given by the

prescribed traction components (Eq 9), are constrained by Eq 23. No other terms in the solution

lead to constraints of this type.

5. THE COMPOSITE RESPONSE

Under prescribed traction, the solution to the displacement and the stress field within the

constituents of the composite cylinder assemblage is given by Eqs (16) and (17), respectively, as

discussed earlier. The composite mathematical strain can be determined by volume averaging the

strain field over the constituents, namely, the composite cylinder elements and the interstitial

matrix. The stress-strain relation for the composite now takes the form (using contracted notation)

Emn = 9M an + Cm (mn a1,2,.... 6) (24)

where S. is the effective compliance; Em is the effective expansional (non-mechanical) strain of

the composite and 5.= o.
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To evaluate the effective elastic moduli, we set the expansional strain components identically equal

to zero, i.e.,
(jP)
em = 0 (for all j.p)

The stress-strain relation for the composite, Eq (24), therefore reduces to

By setting each stress component equal to one individually, while all others are zero,

we will respectively obtain the nth column of the Sam matrix. The composite engineering constants

can now be defined in terms of the elastic compliances.

The expansional strains of a body subjected to thermo-mechanical loading can be computed in the

following manner:

Consider the case where the local material expansional strains are given their actual values

according to some external stimulus, such as a temperature change. Suppose we set Un = 0. Then,

from Eq. (24), we have

Em = Em

where the composite mathematical strain Zm can be computed as explained earlier.

6. NUMERICAL RESULTS AND DISCUSSION

The use of displacement or traction boundary conditions on the surface of the composite cylinder

element in conjunction with the approach described in this work leads to bounding solutions for the

composite effective moduli. Our earlier study [10] reported results based on displacement

boundary conditions which lead to an upper bound of the elastic stiffnesses. In this paper, we have

considered traction boundary conditions on the surface of the composite cylinder element. This
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approach leads to a lower bound estimate of the composite effective moduli and together with the

upper bound results provides a more precise estimate of the composite properties. The composite

cylinder assemblage model is, of course, a geometric idealization of a real fiber reinforced material.

We will first present the bounding solutions for the effective thermo-elastic moduli for

unidirectional Graphite/Epoxy and Nicalon/BMAS (Barium Magnesium Aluminosilicate)

composite systems. The Graphite fiber is assumed to be transversely isotropic while the Nicalon

fiber and Epoxy and BMAS matrices are assumed to be isotropic in nature. The material properties

used in the calculations are listed as follows :

Graphite fiber: ET = 9.66 GPa; EA = 345 GPa; GA=2.07GPa; vT=0.2 9 ;

vA = 0.20; ar = 9.0 x 10-6/OC ; a = - 0.36 x 10-6 /oC;

Nicalon fiber: E = 200 GPa; G = 77 GPa; a = 3.2 x 10-6 /OC ;

Epoxy matrix: E = 3.456 GPa ; G = 1.28 GPa; a = 40.9 x 10-6/PC;

BMAS matrix: E = 106 GPa; G = 43 GPa; a = 2.7 x 10-6 /OC ;

With the fibers aligned unidirectionally (along xl), the composite is transversely isotropic and has

five independent elastic constants. These can be expressed as longitudinal Young's modulus, Ell ;

major Poisson's ratio, v 12 ; longitudinal shear modulus, G12 ; plane-strain bulk modulus, K23 ; and

transverse Young's modulus, E22 The thermal expansion coefficients in the longitudinal and

transverse directions are denoted by a, and a.22, respectively.

The effective moduli solutions for the two material systems, at different fiber volume fractions, are

listed in Table 1. Upper and lower bounds for four of the five elastic moduli, namely, E11  2,

G12 and K23 coincide whereas, bounding solutions for the fifth modulus, E22 , are obtained. The

E22 bounds for the two material systems under study are, however, very close to each other. This

is due to the closeness of the transverse moduli of the constituents in each case. Thus, the range of

effective property prediction is indeed tight. The BMAS matrix with a relatively larger value of
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Young's modulus leads to much higher estimates of composite E22 as compared to the softer

epoxy matrix. Since the Graphite fiber has a large ratio of EA / ET , the stiffening effect for the

Graphite/Epoxy composite is much more pronounced in the longitudinal direction as compared to

that in the transverse direction. Such strong directionality effects are not observed for the

Nicalon/BMAS system since the Nicalon fiber is assumed to be isotropic. For uncoated

fibers, the moduli results derived by Hashin and Rosen [14] are recovered.

The solution for the effective thermal expansion coefficients of Graphite/Epoxy and

Nicalon/BMAS composite systems are illustrated in Figures 3 (a) and 3 (b), respectively. Upper

and lower bounds for both the longitudinal and transverse coefficients are seen to coincide and

Levin's solution [15] is recovered for an uncoated fibrous composite. Low expansions are

obtained in the axial direction for Graphite/Epoxy because of the low expansion coefficient of the

fiber. The initial increase in transverse expansion coefficient for Graphite/Epoxy system is

probably due to the axial restraint of the fiber. This phenomenon where the composite transverse

expansion coefficient increases above that of its constituents expansion coefficients is being

examined elsewhere [16]. No such phenomenon is observed for the isotropic Nicalon fiber and

BMAS matrix system.

We will next consider the effect of different coating materials and thicknesses on the behavior of a

three-dimensional fibrous composite obtained by arranging six fibers parallel to the six lines

joining the opposite vertices of a regular icosahedron. These six axes can be oriented with

reference to an orthogonal cartesian coordinate system x1 x2 x3 as follows : one pair in the xIx 2

plane making angles of 0' with the xl-axis, one pair in the x2 x3 plane making angles of @ with

the x2-axis, and one pair in the x3 xI plane making angles of 0' with the x3-axis, where 0'

= tan-'( 2 sin 180) = 310 43'. As shown by Rosen and Shu [17], this type of arrangement gives

rise to local isotropy. The isotropic relation G = E / [ 2 (1 + v)] can be used as an independent
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check of the model. In general, this relation is not satisfied exactly in the present analysis, however

the error is very small.

The bounding solutions for the Nicalon fiber and BMAS matrix system are shown in Table 2. Also

shown in the table is the effect of different coating thicknesses and coating materials on the

effective thermoelastic moduli. The fiber volume fraction was set at 30% but the ratio of coating

thickness to the cylinder outer radius, defined as ( r2 - r1 ) / r3 , was treated as an independent

variable. The material properties of the two coating materials used in the calculations were:

Coating Material L (GPa) G(GPa) g(10-6 /0C)

Nickel 207 79 13.3

ATJS, Carbon 9.1 4.1 2.2

As seen from Table 2, the bounds for the effective therrnoelastic moduli do not coincide and the

gap between them increases as the coating thickness is increased.

The microstress distribution within the constituents of a multidirectional fiber composite, in

general, depends both on the type of loading and the fiber orientation. Here we consider as an

example the curing stresses in such a body. As an approximation, the curing or residual stresses

can be estimated by subjecting the composite to a uniform temperature change. For the specific

three-dimensional composite under consideration, the stress distribution is identical for the six

fiber orientations. In this problem, the only non-zero stress components predicted by the present

model are ar , o0 and az . The stress concentration is a function of both Young's modulus and the

thermal expansion coefficient of the coating, besides its thickness. The effect of different coating

materials and/or thicknesses on the stress concentrations is quite dramatic. These trends are

illustrated for both the displacement and traction formulations in Tables 3(a), 3(b) and 3(c) for the

components or , ao and az , respectively, where a 1 OC temperature drop is imposed.

43



The radial stress component at the interface can be considered as a failure criteria for debonding,

e.g., a negative value of a. promotes contact between the constituents, whereas, a positive value

suggests possible initiation of debonding and separation at the boundary. It is seen that a' thick'

coating of a ' soft' material with a' low' coefficient of thermal expansion helps in reducing the

stress concentration factor at the boundary. Within the coating, the algebraic maximum hoop stress

occurs at the fiber-coating interface, whereas, in the matrix, the maximum occurs at the coating-

matrix interface. It is this maximum value of hoop stress which is listed in Table 3(b). The present

model predicts the longitudinal stress component, a z , to be a constant within each one of the

constituents. It is seen that extremely large tensile stresses develop in the Nickel coating which has

a high coefficient of thermal expansion whereas, carbon coating, with a low value of E and (x,

helps in reducing the stress concentration both in the fiber as well as in the matrix.

To conclude, it is apparent that generally a reduction in the stress concentration can be made at ',c

expense of the elastic moduli of the composite. Further, by a proper choice of coating thickness,

modulus and coefficient of thermal expansion, the stress component of interest, which is

instrumental in causing a specific mode of failure, can be controlled.

7. THE NDSANDS PROGRAM

Micromechanical considerations in composite materials may require the use of a practical tool that

can handle different constituent materials, arbitrary fiber orientations and multi-axial loading

conditions. To address these requirements, the computer code called NDSANDS (N Directional

Stiffness A N D Strength), developed earlier for displacement boundary conditions [ 10], has been

modified to account for prescribed surface tractions. It can be used either to analyze a composite or

to conduct a parametric study. By parametric study is meant that the user can change either a

material property or the geometry of the composite, one single variable at a time while the

remainder are kept constant, and thereby examine the change in effective properties and stress
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distribution as a result of different input values of the parameter selected. When changing the

material property, we must insure that both the stiffness and compliance matrices remain positive

definite at all times [18]. Although we have presented the formulation here for only one coating, as

many as five coating regions can be modeled in the code.

8. SUMMARY

In summary, we have developed a first order ideal material model to approximate the thermo-elastic

response of a composite body reinforced by coated fibers oriented in various directions. The

coating can either be applied intentionally to achieve the desirable composite properties or it can

occur as a consequence of the processing conditions involved in the composite manufacture. This

formulation corresponding to prescribed surface tractions on the boundary of the representative

volume element leads to a lower bound calculation of the effective moduli and together with the

upper bound results [101 provides a more precise estimate of the composite properties. Parametric

studies have been further conducted to demonstrate the effect of coating materials and thicknesses

on the overall behavior of a three-dimensional fibrous composite.
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APPENDIX

Ui(r) = A1 r3 + A2 + A 3 r + A4
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85(r) = C55 ( Y1 " -

where A1, A 2 ..... . . . . . Y3 are constants. Each one of the constants and the elastic coefficients

have a supercript (j, p ) where j identifies that quantity with the orientation of the composite

cylinder element and p identifies the material constituent within that element. Further, in the

equations listed above, r is a variable with the following limits:

0)
if p=l, 0 < r < r,

(j) (j)
if p=2, r, 5 r _< r2  j 1= ,2 ...... N

0) (0)
if p=3, r2 < r 5 r3
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TABLE 1 . Effective elastic properties for unidirectional Graphite/Epoxy and

Nicalon/BMAS composite systems

Composite System Vf Ell (GPa) v12 G12 (GPa) K23 (GPa) E22 (GPa)
Upper Lower

0.0 3.46 0.350 1.28 4.27 3.456 3.456
0.2 71.78 0.318 1.41 4.65 4.634 4.507
0.4 140.12 0.287 1.55 5.09 5.579 5.227

Graphite/Epoxy 0.6 208.41 0.257 1.70 5.60 6.671 6.227
0.8 276.69 0.228 1.88 6.20 7.947 7.688
1.0 345.00 0.200 2.07 6.91 9.660 9.660

0.0 106.00 0.233 43.00 80.40 106.00 106.00
0.2 124.89 0.248 48.17 93.30 119.20 118.47
0.4 143.74 0.263 53.99 109.21 134.77 132.83

Nicalon/BMAS 0.6 162.53 0.276 60.62 129.33 152.84 150.55
0.8 181.28 0.288 68.21 155.58 174.03 172.82
1.0 200.00 0.299 77.00 191.26 200.00 200.00

TABLE 2 . Effective thermo-elastic moduli for three-dimensional ' isotropic

composite

Coating thickness Composite system Formulation E G V a
Cylinder outer radius (GPa) (GPa) (10-6/10C)

0.00 Nicalon/BMAS Displacement 128.16 51.25 0.250 2.8896
Traction 127.35 50.87 0.252 2.8891

Nicalon/Nickel/ Displacement 129.11 51.60 0.251 3.0415
BMAS Traction 128.25 51.20 0.253 3.0404

0.01
Nicalon/Carbon/ Displacement 118.06 47.50 0.243 2.8787
BMAS Traction 117.49 47.27 0.243 2.8767

Nicalon/Nickel/ Displacement 138.72 55.10 0.259 4.4549
BMAS Traction 137.50 54.54 0.261 4.4496

0.10
Nicalon/Carbon/ Displacement 80.200 32.94 0.217 2.8410
BMAS Traction 74.960 30.76 0.218 2.8243
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TABLE 3 (a). Stress component a. in the fiber-coating and coating-matrix

Interface for AT a .10 C

coating thickness Composite system Formulation Orf-C (O)€ m
cylinder outer radius (KPa) (KPa)

0 Nicalon/BMAS Displacement 26.4 26.4
Traction 29.0 29.0

Nicakxvl/lickel/ Displacement -8.98 44.9
BMAS Traction -4.37 49.5

0.01
NicaloniCarbon/ Displacement 22.8 22.3
BMAS Traction 25.8 25.2

Nicalon/NickeV/ Displacement -290.0 140.0
BMAS Traction -269.0 160.0

0.10
Nicalon/Carbon/ Displacement 8.54 5.95
BMAS Traction 12.40 9.40

TABLE 3 (b) . Stress component o e (algebraic maximum) In the fiber, coating

and matrix for AT = -10 C

coating thickness Composite system Formulation ()f (0)c (08)m
cylinder outer radius (KPa) (KPa) (KPa)

0 Nicalon/BMAS Displacement 26.4 - -55.6
Traction 29.0 - -53.8

Nicalon/Nickel/ Displacement -8.98 3020.0 -97.5
BMAS Traction -4.37 3030.0 -94.1

0.01
Nicalon/Carbon/ Displacement 22.8 -7.46 -50.7
BMAS Traction 25.8 -6.93 -47.9

Nicalon/NickeJ/ Displacement -290.0 2720.0 -407.0
BMAS Traction -269.0 2740.0 -392.0

0.10
NicalonCarbon/ Displacement 8.54 -9.63 -32.0
BMAS Traction 12.4 -8.88 -23.0
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TABLE 3 (c). Stress component o In the fiber, coating and matrix for AT = .10 C

coating thickness Composite system Formulation (rz) f  (02)c (oz)m
cylinder outer radius (KPa) (KPa) (KPa)

0 Nrcalon/BMAS Displacement 77.9 -26.9
Traction 70.9 - -30.4

Nicalon/Nickel/ Displacement 26.3 3060.0 -48.4
BMAS raction 13.6 3040.0 -54.8

0.01
NicalomCarbon/ Displacement 77.9 -4.52 -25.5
BMAS Traction 68.9 -4.63 -29.9

Nicalon/Nickel/ Displacement -424.0 2590.0 -248.0
BMAS Traction -477.0 2530.0 -275.0

0.10
Nicalon/Carbon/ Displacement 76.9 -5.99 -21.0
BMAS Traction 58.7 -6.41 -29.0
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FIG 3. Effective thermal expansion coefficients for

(a) Graphite/Epoxy system (b) Nicalon/BMAS system
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SECTION III

CONSTRAINED MATRIX CRACKING
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1. INTRODUCTION

Ceramic matrix composites (CMC) generally exhibit weak fiber/

matrix interfaces with very little or no chemical bonding. This has

been shown to result in a considerable fracture toughness and the pro-

nounced non-linearity in the load-elongation curve-for a unidirec-

tional CMC subjected to uniaxial tensile loading. The onset of the

nonlinearity is associated with the widespread matrix cracking normal

to the fibers and the applied load. The strain in the composite at

matrix cracking may be higher than the failure strain of the matrix.

If this matrix cracking strain can be increased it would be very bene-

ficial in structural design. Wang [1], in his preliminary investiga-

tion alluded to the idea that having a strong bond between the matrix

and the reinforcement (fiber) would enhance the matrix cracking

strain. In this report an approximate analytical study is presented

to show the effect of such interface constraint on matrix cracking.

The objectives of the study are:

1. To demonstrate analytically the effect of constraint on strain

energy release rates and matrix cracking.

2. To propose an experimental scheme to show the effect of con-

straint.

3. To design a specimen to achieve the second objective.

2. ANALYTICAL MODEL

Isida [2] presented a theoretical analysis of the stress inten-

sity factor for the tension of a centrally cracked strip reinforced

with stringers along its edges as shown in Fig. 1. In the analysis

both of the extensional rigidity and bending rigidity are taken into

consideration. The analysis covers, as special cases, a centrally
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cracked strip with free edges, that with clamped edges and a wide

plate containing an infinite row of colinear cracks with and without

parallel stringers between every adjacent cracks.

A transverse matrix crack in a unidirectional ceramic matrix com-

posite with fibers parallel to the applied load is idealized and is

assumed to be represented by a centrally cracked infinite strip rein-

forced with stringers along the both edges. The matrix is represented

by the sheet and the fibers are presented by the stringers of appro-

priate stiffness. The idealized geometry is shown in Fig. 1.

Following Isida's [2) work, the stress intensity factor for the

configuration shown in Fig. 1 is given by

KI = a /ira F(a,$,A) (1)

where a is the remote stress in the matrix, a and 8 are the dimen-

sionless inertia parameter and the dimensionless extensional rigidity

of the individual stringers given by

CL= (Es/E)(Is/b3t) (2)

B = (Es/E)(As/bt) (3)

in which Es is the Young's modulus of the stringers, E is the modulus

of the matrix, Is is the moment of inertia of the stringers and As is

the sectional area of the stringers. The non-dimensional crack length

X is given by a/b. The correction factor F(a,a,X) is plotted for

various combinations of a, 8 and A in [2].

The strain energy release rate, GI, for a crack completely in

the matrix phase is given by

G[ - K1/E (4)

We assume that an existing flaw will grow when the strain energy

release rate corresponding to that flaw size reaches or exceeds the
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critical strain energy release rate for the matrix material, GIC, that

is

Gi a2 na [F(a,B,X)]2 = GIC (5)

KI - a/wa F(a,$,x) = KIC (6)

From eq. (6), matrix cracking strain can obtained the strain

( as

-muc = KIc/[,/ra E F(x,8,A)] (7)

The cracking strain df the bulk matrix material stringers must be,

however, equal to the ultimate failure strain of the brittle matrix

material.

3. RESULTS AND DISCUSSION

In this section we present some typical results for a number of

combinations of material pairings and crack dimensions in a normalized

form as well as in terms of physical quantities. For the present

study the stringers are assumed to be of width h and are of the same

thickness (t) as the sheet, so that the volume fraction of the string-

ers is given by

vs = h/(h+b) (8)

In Figs. 2 and 3 the normalized strain energy release rates are

plotted as functions of stringer volume fraction for three stringer

stiffnesses. Figure 2 corresponds to a a moderate sized crack while

Fig. 3 corresponds to a large crack. A decrease in the strain energy

release rate indicates a decrease in the crack tip severity (inten-

sity) and hence a less likelihood of crack propagation. This also

reflects the so called pinning (clamping or constraint) effect on the

crack tips provided by the stringers. For a given volume fraction the

constraint is most effective for the highest stringer stiffness. For
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a given volume fraction of a particular stringer material the con-

straining effect is significantly higher when the crack tip is almost

touching the stringers (x - 0.95). When the crack length is very

small compared to the stringer spacing (2b) the crack tip behaves as

if in a monolithic matrix material. Next, we consider a particular

material for the matrix, LAS, and illustrate the effect of constraint

on the matrix cracking strain. Typically material properties of LAS

are

E - 85 GPa

E mu (failure strain) = 0.1%

Klm - 2 MPal'i

From these properties we back calculate the inherent flaw size (ao )

using the stress intensity factor for an infinite medium as

ao a KIc/( ult 2 ) (9)

where ult is the ultimate strength of the matrix. Substitution of

the appropriate values for the properties in eq. (9) results in ao -

0.1762 mm.

In Fig. 4 the effect of stringer spacing on the growth of an

inherent flaw is shown for a given stringer stiffness and various

stringer sizes (h/b). It takes a significantly higher strain to pro-

pagate an inherent flaw when the stringer spacing is of the order of

crack size and as stringer spacing increases the cracking strain

approaches that of monolithic matrix material. The same conclusions

can be drawn by looking at the stresses required to propagate an

inherent flaw shown in Fig. 5 for a given stri-ger size (h - 0.15 mum)

and three different stringer stiffnesses.
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Since the stress intensity factor decreases as the crack propa

gates towards a stringer, it is likely that the inherent flaw once

initiated may not grow unstably if the remote strain held constant.

The solid line in Figs. 6-8 represents the strain for initiation

(onset of growth of an inherent flaw) and the broken line represents

the strain for the crack to grow upto the matrix-stringer interface

(a/b = 0.95). We will take the strain corresponding to the solid line

as the "constrained matrix cracking strain" and assume the cracks at

this strain are observable in an experiment. The cross over point (A)

in these figures indicates that the constraint effect of the stringers

is zero for spacing larger than bA. This critical stringer spacing

(bA) is strongly dependent on the stringer stiffness, that is, for Es

- 100, bA = 0.4 mm, for Es = 200, bA = 0.63 mm, and for Es a 400, bA

is very large. This is a significant observation in that if this

logic is extended to CMC materials it is reasonable to believe that

for a given fiber-matrix system there is a critical fiber spacing

beyond which there is no further increase in the cracking strain of

the composite.

In Fig. 9 we present failure strain (constrained matrix cracking

strain) as a function of stiffener thickness for two matrix layer

thicknesses. For the stiffener material, two systems are considered;

Avco fiber/LAS matrix and Nicalon fiber/LAS matrix both 50% volume

fraction. Results of Fig. 9 can be used in the design of a test spe-

cimen for studying the constraint effect experimentally.

Finally, an approximate design guide line is presented for the

experimental part of this investigation. Three possible stringer

materials are 50% volume fraction Nicalon/LAS, Avco/LAS and Graphite/

Epoxy unidirectional composites with fibers parallel to the loading.
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Approximate dimensions required to double the matrix failure strain,

0.1% to 0.2%, and the corresponding predicted loads at this cracking

strain are presented in Table I. The load ranges are large enough

that a conventional uniaxial tensile test can be performed on these

specimens and the cracks can be observed by coating the specimen edges

with a white paint. It is conceivable that the onset of cracking may

not result in a noticeable drop in load-elongation plot.

4. CONCLUSIONS

The foregoing results show that the constraint provided by the

stringers which are fully bonded to the matrix will enhance the matrix

cracking strain. It does not, however, mean that the composite would

be tougher. We have not considered the effects due to material

orthotropy, stringer failure, the interface failure and the periodic

spacing of the fibers in the above study.
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